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§1. Introduction

An α-model is a mollification of the Navier–Stokes (NS) system in

which the smoothing is performed by filtering of the velocity

arguments in the bilinear term of the original NS system. The

parameter α reflects the length scale of the model. Usually, the

Green function associated with the Helmholtz operator I−α2∆ is

considered as a filtering kernel with spatial width α.

The Lagrangian averaged Navier–Stokes-α (LANS-α) model

(also known in the literature as the viscous 3D Camassa–Holm

equations) was probably the first such α-model. It was

demonstrated analytically and computationally in many works that

the LANS-α model gives a good approximation in the study of

problems related to turbulent flows.

Along the same lines, other approximate α-models were

proposed and studied: Leray-α, Clark-α, simplified Bardina-α,

modified Leray-α and other models.



§1. Introduction

An α-model is a mollification of the Navier–Stokes (NS) system in

which the smoothing is performed by filtering of the velocity

arguments in the bilinear term of the original NS system. The

parameter α reflects the length scale of the model. Usually, the

Green function associated with the Helmholtz operator I−α2∆ is

considered as a filtering kernel with spatial width α.

The Lagrangian averaged Navier–Stokes-α (LANS-α) model

(also known in the literature as the viscous 3D Camassa–Holm

equations) was probably the first such α-model. It was

demonstrated analytically and computationally in many works that

the LANS-α model gives a good approximation in the study of

problems related to turbulent flows.

Along the same lines, other approximate α-models were

proposed and studied: Leray-α, Clark-α, simplified Bardina-α,

modified Leray-α and other models.



§1. Introduction

An α-model is a mollification of the Navier–Stokes (NS) system in

which the smoothing is performed by filtering of the velocity

arguments in the bilinear term of the original NS system. The

parameter α reflects the length scale of the model. Usually, the

Green function associated with the Helmholtz operator I−α2∆ is

considered as a filtering kernel with spatial width α.

The Lagrangian averaged Navier–Stokes-α (LANS-α) model

(also known in the literature as the viscous 3D Camassa–Holm

equations) was probably the first such α-model. It was

demonstrated analytically and computationally in many works that

the LANS-α model gives a good approximation in the study of

problems related to turbulent flows.

Along the same lines, other approximate α-models were

proposed and studied: Leray-α, Clark-α, simplified Bardina-α,

modified Leray-α and other models.



§1. Introduction

An α-model is a mollification of the Navier–Stokes (NS) system in

which the smoothing is performed by filtering of the velocity

arguments in the bilinear term of the original NS system. The

parameter α reflects the length scale of the model. Usually, the

Green function associated with the Helmholtz operator I−α2∆ is

considered as a filtering kernel with spatial width α.

The Lagrangian averaged Navier–Stokes-α (LANS-α) model

(also known in the literature as the viscous 3D Camassa–Holm

equations) was probably the first such α-model. It was

demonstrated analytically and computationally in many works that

the LANS-α model gives a good approximation in the study of

problems related to turbulent flows.

Along the same lines, other approximate α-models were

proposed and studied: Leray-α, Clark-α, simplified Bardina-α,

modified Leray-α and other models.



§1. Introduction

In many works, the Cauchy problems for all these models were

studied, the global existence and uniqueness of weak (and

strong) solutions were established, the smoothing properties of

solutions were proved, the global attractors for the corresponding

semigroups were constructed and the number of degree of

freedom (the dimension of the global attractors) of these

dynamical systems were estimated in terms of the relevant

physical parameters.

It is needless to say that the analogous questions addressed to

the 3D NS system remain without answers since the uniqueness

theorem for the (existing) global weak solutions of the 3D NS

system is not proved yet and so the known theory of global

attractors of infinite dimensional dynamical systems is not

applicable to the 3D NS system.
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§1. Introduction

However, the theory of trajectory attractors for evolution PDEs

was developed with emphasis on the equations for which the

uniqueness theorem of solutions of the corresponding initial-value

problems does not hold or is not proved, e.g., for the 3D NS

system.

In the present work, we study the connection between the

long-time dynamics of solutions of various 3D α-models and the

solutions of the exact 3D NS system as α → 0+ using the

trajectory attractors approach.

We also suggest a simple classification of α-models. We partition

the considered α-models into 2 classes: Class I and Class II

depending on the orthogonal properties of the mollifying nonlinear

terms. The trajectory attractors for the Class I α-model (e.g., the

Leray-α model) converges “stronger” as α → 0+ to the limit than

for the Class II α-models (e.g., the LANS-α model).
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§2. The α-models

We consider the following system:

∂tv =−νAv−PF(u,v) +g(x), ∇ ·v = 0, (1)

v = u−α
2∆u, ∇ ·u = 0, (2)

x ∈ T3 := [Rmod 2π]3, t ≥ 0;

where ν > 0 is the viscosity and P is the Leray projector.

In system (1), (2), the vector fields

v = (v1(x, t),v2(x, t),v3(x, t)) and u = (u1(x, t),u2(x, t),u3(x, t))

are unknown and the external force g = (g1(x),g2(x),g3(x)) is

given. We assume that these functions have zero means:∫
T3

u(x, t)dx = 0,
∫
T3

v(x, t)dx = 0,
∫
T3

g(x)dx = 0.

We denote by V the space of trigonometrical polynomials

y(x) = (y1(x),y2(x),y3(x)) such that ∇ ·y = 0 and
∫
T3 y(x)dx = 0.
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§2. The α-models

We denote by Hs,s ∈ R+, the closure of the set V in the norms

‖ · ‖s of the space Hs(T3)3. We set H = H0 and the space

H−s,s≥ 0, is the dual to Hs. Then we consider the Leray

orthogonal projector P : L2(T3)3→ H. The Stokes operator

A =−P∆ with domain D(A) = H2 is self-adjoint and positive.

The nonlinear term F(u,v) =
(
F1(u,v),F2(u,v),F3(u,v)

)
in (1) has

the vector components of the form

F i(u,v) =
3

∑
k,j,n=1

Ci
kjnu

k
∂xj

vn +Di
kjnv

k
∂xj

un +Ei
kjnu

k
∂xj

un, (3)

where Ci
kjn, Di

kjn, and Ei
kjn are some real coefficients. Note that in

(3), we do not use monomials of the form vk∂xj
vn since they do

not contain the components of the “mollifying” vector field u.
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§2. The α-models

We shall consider various operators F(u,v) of the form (3) which

correspond to various α-models, that are characterized by the

following two basic properties.

First poperty. We assume that for u = v ∈ H1

PF(v,v) = P
3

∑
j=1

vj
∂xj

v = P(v ·∇)v

is the nonlinear term from the classical 3D NS system.

That is, for α = 0, the system (1), (2) reads

∂tv =−νAv−P(v ·∇)v +g(x), x ∈ T3, t ≥ 0,

(The pressure is excluded by applying the operator P.)
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§2. The α-models

Second property of orthogonality for the nonlinear term F(u,v)
partitions α-models into two classes.

CLASS I. We assume that

〈F(u,v),v〉= 0, ∀u,v ∈ H1. (4)

CLASS II. We assume that

〈F(u,v),u〉= 0, ∀u,v ∈ H1. (5)

We now consider examples of α-models of these classes.

Class I. The Leray-α model, F(u,v) = (u ·∇)v.
It is well known form the theory of the NS system that

〈(u ·∇)v,v〉= 0, ∀u,v ∈ H1

so identity (4) holds. For u = v, we clearly have the exact 3D NS

system.
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so identity (4) holds. For u = v, we clearly have the exact 3D NS

system.



§2. The α-models

Class II. The LANS-α model, F(u,v) =−u× (∇×v).
It is easy to show that

〈u× (∇×v),u〉= 0, ∀u,v ∈ H1

so identity (5) holds. It follows from the vector calculus that the

nonlinear term −u× (∇×v) satisfies:

−u× (∇×v) = (u ·∇)v +
3

∑
j=1

uj
∇vj

and then, for v = u,

−u× (∇×u) = (u ·∇)u+
1

2
∇(u ·u).

Consequently,

−P(u× (∇×u)) = P(u ·∇)u,

since the operator P project any gradient vector to zero. Thus,

for u = v, we also obtain the 3D NS system.
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§2. The α-models

Two more α-models appear if, in the previous examples, we

interchange variables u and v. Under this procedure, the

α-models change classes and we obtain the following examples.

Class II. The modified Leray-α: F(u,v) = (v ·∇)u.

Class I. The modified LANS-α: F(u,v) =−v× (∇×u).

The same trick clearly changes class for any α-model. That is, if

FI(u,v) belongs to Class I, then FII(v,u) := FI(u,v) belongs to

Class II and vice versa.

In all the above examples, α-models were constructed by the

mollification of the only one argument in the nonlinear term of the

3D NS. Mollifying both of them, one gets so-called the simplified

Bardina-α model having the class II.

Class II. The Bardina-α: F(u,v) =−(u ·∇)u.
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§2. The α-models

In conclusion, we note that there are infinitely many α-models of

both classes. Indeed, if we have two different α-models from the

same class with functions F1(u,v) and F2(u,v), then the function

F(u,v) = θF1(u,v) + (1−θ)F2(u,v), ∀θ ∈ (0,1),

also produces an α-model of the same class.
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§3. Trajectory attractor of the 3D NS system

Let g ∈ H. We consider the family K + of all weak solutions

{v(t), t ≥ 0} of the 3D NS system

∂tv =−νAv−P(v ·∇)v +g(x), x ∈ T3, t ≥ 0, (6)

having the following properties:

1) v(·) ∈ Lloc
2

(R+;H1)∩Lloc
∞ (R+;H),

2) v(t) satisfies the following energy inequality:

− 1

2

∫
∞

0

‖v(s)‖20ψ
′(s)ds+ν

∫
∞

0

‖∇v(s)‖20ψ(s)ds≤
∫

∞

0

〈g,v(s)〉ψ(s)ds

(7)

for every positive scalar function ψ(·) ∈ C∞

0
(R+;R+).

We note that any solution v(t), t ≥ 0, of the Cauchy problem for

(6) with initial data v(0) ∈ H resulting from the Galerkin

approximation method belongs to K +. Consequently, the set

K + is non-empty and relatively large. The set K + is called the

trajectory space of the 3D NS system.
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§3. Trajectory attractor of the 3D NS system

Equation (6) implies that ∂tv ∈ Lloc
2

(R+;H−2) for any v ∈K +.

We now define the Banach space

F b
+ =

{
v(·) | v(·) ∈ Lb

2(R+;H1)∩L∞(R+;H), ∂tv(·) ∈ Lb
2(R+;H−2)

}
with norm

‖v‖F b
+

= ‖v‖Lb
2
(R+;H1) +‖v‖L∞(R+;H) +‖∂tv‖Lb

2
(R+;H−2),

where

‖v‖2
Lb

2
(R+;E)

= sup
t≥0

∫ t+1

t
‖v(s)‖2Eds.
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§3. Trajectory attractor of the 3D NS system

Proposition 1

1) K + ⊂F b
+;

2) for any function v(·) ∈K +, the following inequality holds

‖T(h)v(·)‖F b
+
≤ C0‖v(·)‖2L∞(0,1;H) exp(−νλ1h) +R0, ∀h≥ 0, (8)

where λ1 is the first positive eigenvalue of the operator A and the

constants C0,R0 depend only on ν , λ1, and ‖g‖0.

The proof of this proposition is given, e.g., in the book:

V.V.Chepyzhov and M.I.Vishik, Attractors for Equations of

Mathematical Physics. Providence: AMS, 2002.

We also consider the space

F loc
+ =

{
v(·) | v(·) ∈ Lloc

2 (R+;H1)∩Lloc
∞ (R+;H), ∂tv(·) ∈ Lloc

2 (R+;H−2)
}
.
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§3. Trajectory attractor of the 3D NS system

In this space, we define the local weak topology Θloc
+ generated

by the following weak convergence: by definition, a sequence

{vn} ⊂F loc
+ converges to v ∈F loc

+ in Θloc
+ as n→+∞, if vn ⇁ v

in L2,w(0,M;H1), vn ⇁ v in L∞,∗w(0,M;H), and ∂tvn ⇁ ∂tv in

L2,w(0,M;H−2) as n→+∞ for any M > 0.

Notice that F b
+ ⊂Θloc

+ and any ball

BR =
{
v(·) ∈F b

+ | ‖v‖F b
+
≤ R

}
in F b

+

is compact in the space Θloc
+ . Moreover, the corresponding

topological space is metrizable.

The translation semigroup {T(h)} := {T(h),h≥ 0} is continuous

in the topology Θloc
+ . Besides, the trajectory space K + is closed

in Θloc
+ . The semigroup {T(h)} maps K + to itself:

T(h)K + ⊂K + for all h≥ 0.
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§3. Trajectory attractor of the 3D NS system

Recall, a set P ⊂F loc
+ is called attracting, if, for any bounded (in

F b
+) set B⊂K +, the set

T(h)B→ P as h→+∞ in the topology Θloc
+ . (9)

Notice that the following embedding is continuous:

Θloc
+ ⊂ Lloc

2 (R+;H1−δ ), ∀δ , 0 < δ ≤ 1.

Therefore, we have strong convergence (9) in the space

L2(0,M;H1−δ ) for any M > 0.

Definition 1

A set A⊂ K + is called the trajectory attractor of the semigroup

{T(h)} in the topology Θloc
+ , if:

1) A is bounded in F b
+ and compact in Θloc

+ ;
2) A is strictly invariant: T(h)A= A for all h≥ 0; 3) A is an

attracting set for the semigroup {T(h)} on K + in Θloc
+ .
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L2(0,M;H1−δ ) for any M > 0.

Definition 1

A set A⊂ K + is called the trajectory attractor of the semigroup

{T(h)} in the topology Θloc
+ , if:

1) A is bounded in F b
+ and compact in Θloc

+ ;
2) A is strictly invariant: T(h)A= A for all h≥ 0; 3) A is an

attracting set for the semigroup {T(h)} on K + in Θloc
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§3. Trajectory attractor of the 3D NS system

Inequality (8) implies that the ball

B2R0
=
{
v(·) ∈F b

+ | ‖v‖F b
+
≤ 2R0

}
in F b

+ is an attracting set for the semigroup {T(h)}|K + in the

topology Θloc
+ .

It was indicated above that the ball B2R0
is a compact metric

space. Hence, according to the known classical theorem on

attractors of semigroups, the continuous semigroup {T(h)} on

K + has a compact (in Θloc
+ ) trajectory attractor A⊂K +∩B2R0

:

A=
⋂
s>0

[⋃
h≥s

T(h)(K +∩B2R0
)

]
Θloc

+
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§4. Trajectory attractors of α-model

CLASS I. The Cauchy problem of the system (1), (2) with

u(0) ∈ H2 has a unique solution in the space of functions

u ∈ L2(0,M;H3)∩L∞(0,M;H2) and ∂tu ∈ L2(0,M;H1), ∀M > 0.

For the corresponding function v = (I + α2A)u, we have

v ∈ L2(0,M;H1)∩L∞(0,M;H) and ∂tv ∈ L2(0,M;H−1), ∀M > 0.

Energy inequality (7) becomes the energy equality: ∀ψ(·) ∈ C∞

0
(R)

− 1

2

∫
∞

0

‖v(s)‖20ψ
′(s)ds+ν

∫
∞

0

‖∇v(s)‖20ψ(s)ds =
∫

∞

0

〈g,v(s)〉ψ(s)ds,

(10)
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CLASS II. The Cauchy problem of the system (1 ), (2) with

u(0) ∈ H1 has a unique solution in the space of functions

u ∈ L2(0,M;H2)∩L∞(0,M;H1) and ∂tu ∈ L2(0,M;H), ∀M > 0.

For the corresponding function v = (I + α2A)u we have

v ∈ L2(0,M;H)∩L∞(0,M;H−1) and ∂tv ∈ L2(0,M;H−2), ∀M > 0.

This space of solutions of Class II α-models is weaker than those

of Class I. In particular, we can not write the energy equality in

terms of the function v. However, it is possibly to prove this

equality for some function w that is intermediate between v and u.

We set w = (I + α2A)1/2u. Then

w ∈ L2(0,M;H1)∩L∞(0,M;H), ∂tw ∈ L2(0,M;H−1),

and the function w satisfies energy equality: ∀ψ(·) ∈ C∞

0
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§4. Trajectory attractors of α-model

Using energy equality (10) and (11), we prove the following a

priory estimates for solutions of α-models from Class I or II.

Proposition 2

If u(t) is a solution of α-model (1), (2), then,

for Class I, the function v(t) = (I + α2A)u(t) ∈F b
+ and

‖T(h)v(·)‖F b
+
≤ C1‖v(·)‖2L∞(0,1;H) exp(−νλ1t) +R1; (12)

for Class II, the function w(t) = (I + α2A)1/2u(t) ∈F b
+ and

‖T(h)w(·)‖F b
+
≤ C1‖w(·)‖2L∞(0,1;H) exp(−νλ1t) +R1. (13)

The constants C1 and R1 are independent of α.
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§4. Trajectory attractors of α-model

Similar to the space K +, we define the trajectory space K +
α for

a given α-model of Class I or Class II.

For Class I, K +
α consists of all functions

K +
α = {vα (t) = (I + α

2A)uα (t) | uα (0) ∈ H2},

where uα (t) is a solution of the Class I α-model with arbitrary

initial data uα (0) ∈ H2.

For Class II, K +
α consists of all functions

K +
α = {wα (t) = (I + α

2A)1/2uα (t) | uα (0) ∈ H1},

where uα (t) is a solution of the Class II α-model with arbitrary

initial data uα (0) ∈ H1.
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§4. Trajectory attractors of α-model

Recall that any element of the trajectory space K +
α of Class I and

II satisfies the energy equality (10) and (11), respectively.

The translation semigroup {T(h)} acts on K +
α . It is easy to prove

that the space K +
α is closed in Θloc

+ . Inequalities (12) and (13)

imply that K +
α ⊂F b

+ and there exists an absorbing set of the

semigroup {T(h)} in K +
α , bounded in F b

+ and compact in Θloc
+ .

Then, similar to Section 3, we establish the existence of the

trajectory attractor Aα of the α-model [belonging to Class I or II]

for α > 0, that is, the set Aα ⊂K +
α , Aα is bounded in F b

+,

compact in Θloc
+ ,

T(h)Aα = Aα ∀h≥ 0 and

T(h)Bα → Aα (h→+∞)

in the topology Θloc
+ for any bounded set Bα ⊂K +

α .
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α , Aα is bounded in F b

+,

compact in Θloc
+ ,

T(h)Aα = Aα ∀h≥ 0 and

T(h)Bα → Aα (h→+∞)

in the topology Θloc
+ for any bounded set Bα ⊂K +

α .



§4. Trajectory attractors of α-model

It follows from a priori estimates (12) and (13) that the trajectory

attractors Aα belongs to the ball B in F b
+ with radius R1,

therefore, they are uniformly (w.r.t. α ∈ (0,1]) bounded in the

space F b
+.

In the next section, we formulate a technical lemma that is very

important in the study of the limit behaviour of solutions of

α-models as α → 0+.
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§5. Trajectory convergence of α-models

Lemma

Let sequences {un} ⊂F b
+ and {αn} ⊂ R+ be given such that

αn→ 0+ (n→ ∞) . Denote

vn(t) = (I + α
2
nA)un(t) and wn(t) = (I + α

2
nA)1/2un(t).

Assume EITHER {vn(t)} is bounded in F b
+ and

vn(t)→ u(t) as n→ ∞ in Θloc
+

OR {wn(t)} is bounded in F b
+ and

wn(t)→ u(t) as n→ ∞ in Θloc
+ .

THEN {un(t)} is also bounded in F b
+ and

un(t)→ u(t) as n→ ∞ in Θloc
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§5. Trajectory convergence of α-models

Using this lemma, we prove the following main result.

Consider an arbitrary α-model from class I or class II with

corresponding trajectory space K +
αn

.

Theorem 1

Let sequences {zαn
(t)} ⊂K +

αn
and {αn} ⊂ R+ be given such that

{zαn
(t)} is bounded in the space F b

+, αn→ 0+ (n→ ∞), and

zαn
(·)→ z(·) as αn→ 0+ in Θloc

+ .

Then z(t), t ≥ 0, is a weak solution of the 3D Navier–Stokes

system that satisfies the energy inequality, that is, z ∈K +.
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§5. Trajectory convergence of α-models

Theorem 2

Let, for Class I,

Bα =
{
vα (t) = (I + α

2A)uα (t), t ≥ 0

}
, 0 < α ≤ 1,

and for Class II

Bα =
{
wα (t) = (I + α

2A)1/2uα (t), t ≥ 0

}
, 0 < α ≤ 1,

be a uniformly bounded in F b
+ family of trajectories from K +

α :

‖Bα‖F b
+
≤ R, ∀α ∈]0,1].

Then

T(h)Bα → A (h→+∞, α → 0+) in Θloc
+ , (14)

where A is the trajectory attractor of the 3D NS system (6).
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§5. Trajectory convergence of α-models

Corollary

Trajectory attractors Aα of the α-model converge to the

trajectory attractor A of the 3D NS system as α → 0+ :

Aα → A (α → 0+) in Θloc
+ . (15)

Since

Θloc
+ ⊂ Lloc

2 (R+;H1−δ ), 0 < δ ≤ 1,

the convergence holds also in the strong metric of the space

Lloc
2

(0,M;H1−δ ) for every M > 0 :

distLloc
2

(0,M;H1−δ )(Aα ,A)→ 0 (α → 0+).

Here, distM (X,Y) denotes the non-symmetric Hausdorff deviation

of a set X from a set Y in the metric space M .
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§5. Trajectory convergence of α-models

Notice that, for the Class II α-models (e.g., the LANS-α model),

we can not state the convergence in terms of functions

vα = (I + α2A)uα (t) since we have proved only weak a priory

estimates. Thus, we conclude that the Class I α-models (e.g., the

Leray-α model) provides “stronger” approximation of the 3D NS.

Due to Lemma, the assertions of Theorem 2 are also valid for

uniformly bounded families B̃α of smooth trajectories uα of an

α-model. Here, for Class I,

B̃α = (I + α
2A)−1Bα = {uα (t), t ≥ 0} ,

for Class II,

B̃α = (I + α
2A)−1/2Bα = {uα (t), t ≥ 0} ,

and all convergences hold in term of the mollified solutions uα (t)
in places of vα (t) (Class I) or wα (t) (Class II):

T(h)B̃α → A (h→+∞, α → 0+) in Θloc
+ .
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§6. On minimal limits of trajectory attractors as α → 0+

Let Aα be the trajectory attractor of an α-model, 0 < α ≤ 1. We

have established that Aα ⊂ B, where B is the ball in F b
+ with

radius R1 that is independent of α.

It is clear that the trajectory attractor A of the exact NS system

also belongs to the ball B.

Recall that the ball B is compact in the topology Θloc
+ . It follows

from the Uryson compactness theorem that the subspace B∩Θloc
+

equipped with topology Θloc
+ is metrizable. We denote the

corresponding metric in B∩Θloc
+ by ρ( · , ·). The metric space

itself, we denote by Bρ . It is compact and complete.

Using these new notations, the result of the previous section can

be written in the form

distBρ
(Aα ,A)→ 0+ as α → 0+ .
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§6. On minimal limits of trajectory attractors as α → 0+

Recall that the set A⊂ Bρ is closed in Bρ .

Definition 2

Let Amin be the minimal closed subset of A that satisfies the

above attracting property , i.e.,

lim
α→0+

distBρ
(Aα ,Amin) = 0

and Amin belongs to every closed subset A′ ⊆ A for which

lim
α→0+

distBρ

(
Aα ,A

′)= 0.

We call the set Amin the minimal limit of the trajectory attractors

Aα as α → 0+ .
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§6. On minimal limits of trajectory attractors as α → 0+

It is clear that the minimal limit Amin is unique. To prove the

existence, it is easy to verify that the set

Amin =
⋂

0<δ≤1

[ ⋃
0<α≤δ

Aα

]
Bρ

.

satisfies all the needed properties.

We now formulate the final theorem of the report.

Theorem 3

For every α-model, the minimal limit Amin of the trajectory

attractors Aα as α → 0+ is a connected component of the

trajectory attractor A. Moreover, the set Amin is compact and

strictly invariant with respect to the translation semigroup, that is,

T(h)Amin = Amin, ∀h≥ 0.
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§7. Conclusion

The concept of the minimal limit Amin of the trajectory attractors

as α → 0+ was suggested by Mark Iosifovich Vishik. The

properties of the minimal limit make it a very useful object in the

study of various α-models that approximate the exact 3D NS

system.

We note that the question of the connectedness of the trajectory

attractor A of the 3D NS system remains open.

Some years ago, Mark Iosifovich also has formulated the

following hypothesis: to different α-models of the 3D NS system

(Camassa–Holm, Leray-α, Clark-α, simplified Bardina-α, etc.),

different minimal limits of their trajectory attractors Aα as

α → 0+ may correspond.
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