Reduced ODE Systems Governing Coarsening Dynamics of Dewetting Liquid Films

Georgy Kitavtsev Joint work with Barbara Wagner (TU Berlin), Barbara Niethammer (Uni Bonn) and Lutz Recke (HU Berlin)

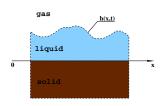
Infinite-dimensional dynamics, dissipative systems, and attractors Nizniy Novgorod, 15 July 2014

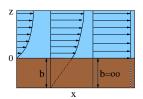
Outline of the talk

- Thin-film equations: weak- and strong-slip models.
- Energy and entropy equalities.
- Existence of weak solutions and convergence to limiting cases.

- Coarsening dynamics of drops in thin liquid films.
- Center-manifold and formal matched asymptotics approaches.
- Reduced ODE models describing coarsening dynamics.
- Coarsening laws for the exact collision-absorption model.

Physical Model





Geometric sketch of 2D liquid film

Three flow types for different slip lengths

Driving physical effects:

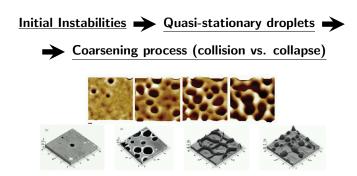
- Surface tension
- Intermolecular interactions with solid substrate: destabilizing van der Waals and stabilizing Born repulsion terms

$$\Pi_{\varepsilon}(h) = \frac{\varepsilon^2}{h^3} - \frac{\varepsilon^3}{h^4}, \quad \varepsilon \ll 1$$

• Slippage
$$b := u/u_Z$$

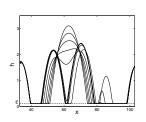
Dewetting stages

Nanometric viscous polymer fluid on SiO substrate:



J. Becker et al. '02, P. F. Green et. al. '01

Last stage: Long-time Coarsening Process



experiments by Limary et al. '02,

numerics in 2D case

Problems to consider here are:

- Coarsening mechanisms: collapse (similar to Ostwald Ripening in binary alloys) and collision of droplets (new effect)
- Coarsening rates and their dependence on physical parameters

Hierarchy of Mathematical Models

Navier-Stokes equations+conservation of mass

Lubrication equations for different slip ranges

Reduced ODE models describing coarsening dynamics of droplets

An exactly solvable collision/absorption model

Lubrication Models

Weak-slip

$$h_t = -\left(M(h) \left[\sigma h_{xx} - \Pi_{\varepsilon}(h)\right]_x\right)_x$$

Strong-slip

Re
$$((hu)_t + (hu^2)_x) = \nu (hu_x)_x +$$

$$+h(\sigma h_{xx} - \Pi_{\varepsilon}(h))_x - \frac{u}{\beta}$$

$$\partial_t h = -(hu)$$

- Conservation of mass
- Different scalings for slip length
- Mobility term
- Pressure
- Limiting cases:
 - No-slip case
 - Navier-slip case
 - Suspended free films

$$\int_{-L}^{L} h(x,t) = h_c = \text{const for all } t \ge 0$$

$$b \ll \beta_I \ll \beta$$

$$M(h) = h^3 + bh^2$$

$$P(h) = -\sigma h_{xx} + \Pi_{\varepsilon}(h)$$

$$b = 0, M(h) = h^3$$

$$\beta = \beta_I$$
, $M(h) = h^2$

$$\beta = \infty$$

Summary on the strong slip and free film models

- Derivation of the model (Münch et. al '06, Erneux and Davis '93)
- Weak solutions and their convergence to the classical solutions of the intermediate-slip equation as $\beta \to 0$. (K., Laurençot and Niethammer '11)
- Coarsening dynamics of metastable droplets. Coarsening rates for the weak-slip regime $t^{-2/5}$. Migration direction change. Conjecture of other coarsening slopes due to dominating migration. (K. and Wagner '10, Otto et. al '06, Glasner et. al '09).

Equations related to the strong-slip model

1-D Korteweg and viscous shallow-water equations on a bounded domain

$$\partial_t(hu) + \partial_x(hu^2) = \partial_x(\nu(h)\partial_x u) + \sigma h \partial_x^3 h - \partial_x P(h)$$

 $\partial_t h = -\partial_x(hu)$.

- Solonnikov '76 strong solutions in the case $\sigma=0,\, \nu(h)=\nu={\rm const}$ for $d\geq 1.$
- Mellet and Vasseur '08 and H.-L. Li et al. '08- strong solutions in the case $\sigma=0,\, \nu(h)=\nu h^k$ and $P(h)=h^\gamma.$
- Bresch and Desjardins '04- weak solutions in the case $\sigma \geq 0$, $\mu(h) = \nu h$ for $d \geq 1$.

Difference to the strong-slip model in the singular pressure term and additional slip term.

Energy and entropy equalities: weak-slip model

• Energy equality:

$$\frac{dE}{dt} = -\int M(h) |\partial_x \pi|^2 dx,$$

where energy

$$E(h) := \int U(h) + \frac{\sigma(\partial_x h)^2}{2} dx$$

with $U(h) := \int_h^\infty \Pi(\tau) d\tau$.

• Entropy equality with entropy $G''_n(h) := 1/h^n$ (Bernis and Friedman '00):

$$\frac{d}{dt} \int G_n(h) dx = -\sigma \int |\partial_{xx} h|^2 dx - \int \Pi'(h) |\partial_x h|^2 dx.$$

Energy and entropy equalities: strong-slip model

• Energy equality:

$$\frac{dE}{dt} = -4 \int_0^1 \nu h |\partial_x u|^2 dx - \int_0^1 \frac{u^2}{\beta} dx,$$

where energy

$$E(h) := \int_0^1 \left[\text{Re} \, h \frac{u^2}{2} + U(h) + \sigma \frac{|\partial_x h|^2}{2} \right] \, dx.$$

• BD-entropy equality with entropy $G_2(h) := \log(h)$:

$$\frac{d}{dt} \int_0^1 \left[\frac{1}{2} h(\operatorname{Re} u + \nu \partial_x G_2(h))^2 - \frac{\nu}{\beta} G_2(h) + \operatorname{Re} \left(\sigma \frac{|\partial_x h|^2}{2} + U(h) \right) \right]$$

$$= -\operatorname{Re} \int_0^1 \frac{u^2}{\beta} dx - 4\sigma \nu \int_0^1 |\partial_{xx} h|^2 dx - \nu \int_0^1 \Pi'(h) |\partial_x h|^2 dx.$$

.

A priori estimates

Proposition

For fixed positive $\sigma, \operatorname{Re}, \beta, T$ there exists $C_0 > 1$ depending on T, α, ν , $\operatorname{Re}, \sigma, \beta$, and u_0, h_0 such that the following terms are bounded by C_0 in respective norms

$$\sqrt{h}, \, \partial_x \sqrt{h}, \, h^{-3/2}, \, \partial_x h, \, \sqrt{\text{Re}} \sqrt{h} u \in L^{\infty}(0, T; L^2(0, 1)), \\
\partial_x (h^{-3/2}), \, \partial_{xx} h, \, \sqrt{h} \partial_x u, \, \frac{u}{\sqrt{\beta}} \in L^2((0, 1) \times (0, T)), \\$$

and

$$C_0^{-1} \le h(x,t) \le C_0$$

for all $x \in (0,1)$ and $t \in (0,T)$. The constant C_0 tends to ∞ as $\sigma \to 0$.

Sketch of the proof: All estimates follow from the energy equality except one for $\partial_{xx}h$.

Global weak solutions: weak-slip model

Theorem (Bernis and Friedman '90)

Let $\Pi(h)\equiv 0$ and $M(h)=h^n$ with n>1 then under some regularity conditions on $h_0\geq 0$ there exists $h\geq 0$ a week solution on $(0,1)\times [0,\infty)$:

$$h_x \in L^2(0,T; H^1_0(0,1))$$
 for all $T > 0$ and

$$\int_0^\infty \int_0^1 h \partial_t \psi \, dx \, dt + \int_0^1 h_0 \psi(.,0) \, dx = \sigma \int_0^\infty \int_0^1 \partial_{xx} h \partial_x (M(h) \partial_x \psi) \, dx \, dt$$

 $\forall \psi \in C_0^{\infty}((0,1) \times [0,\infty))$. For $n \geq 4$ h is a unique positive smooth solution.

Theorem (Bertozzi et al. '01, Bertozzi and Pugh '98)

Let

$$\Pi(h) = \frac{1}{h^3} - \frac{\alpha}{h^4}, \ \alpha > 0$$

and $M(h) = h^n$ with n > 1 then under some regularity conditions on $h_0 > 0$ there exists a unique smooth positive solution h on $(0,1) \times [0,\infty)$.

Global weak solutions: strong-slip model

Theorem (K., Laurençot and Niethammer '11)

For any nonegative $\sigma, \mathrm{Re}, \beta$ and $h_0>0$ there exists a global weak solution $(h,\,u)$ having the regularity properties stated in a priori estimates and satisfying

$$\int_0^\infty \int_0^1 h \partial_t \psi \, dx dt + \int_0^1 h_0 \psi(\cdot, 0) \, dx = -\int_0^\infty \int_0^1 h u \partial_x \psi \, dx dt,$$

$$\operatorname{Re} \int_0^\infty \int_0^1 hu \partial_t \phi \, dx dt + \operatorname{Re} \int_0^1 h_0 u_0 \phi(\cdot, 0) \, dx + \operatorname{Re} \int_0^\infty \int_0^1 hu^2 \partial_x \phi \, dx \, dt$$

$$-\nu \int_0^\infty \int_0^1 h \partial_x u \partial_x \phi \, dx \, dt - \sigma \int_0^\infty \int_0^1 \partial_x h \partial_{xx} h \phi \, dx \, dt$$

$$-\sigma \int_0^\infty \int_0^1 h \partial_{xx} h \partial_x \phi \, dx \, dt + \int_0^\infty \int_0^1 \Pi_1(h) \partial_x \phi \, dx dt - \frac{1}{\beta} \int_0^\infty \int_0^1 u \phi \, dx dt = 0$$

for all $\psi \in C_0^\infty([0,1] \times [0,\infty))$ and $\phi \in C_0^\infty((0,1) \times [0,\infty))$, where

$$\Pi_1(h) := -\int_1^\infty \tau \Pi'(\tau) \, d\tau.$$

Global weak solutions: compactness

Sketch of the proof:

- $(\partial_t h_{\varepsilon_n})$ is bdd in $L^{\infty}(0,T;H^{-1}(0,1))$
- \bullet (h_{ε_n}) is bdd in $L^\infty(0,T;H^1(0,1))$ and $L^2(0,T;H^2(0,1))$
- $\bullet \ H^1(0,1) \hookrightarrow C([0,1]) \hookrightarrow H^{-1}(0,1)$ and Simon '87 imply

$$\begin{array}{cccc} h_{\varepsilon_n} & \to & h & \text{in} & L^2(0,T;W^{1,p}(0,1)) \cap C([0,1] \times [0,T]), \\ \partial_t h_{\varepsilon_n} & \stackrel{\star}{\rightharpoonup} & \partial_t h & \text{in} & L^{\infty}(0,T;H^{-1}(0,1)). \end{array}$$

Hence by uniform low bound

$$h_{\varepsilon_n}^{-1} \to h^{-1} \quad \text{in} \quad C([0,1] \times [0,T]).$$

Next, using momentum equation and a priori estimates

$$(\partial_t(h_{\varepsilon_n}u_{\varepsilon_n})) \text{ and } (h_{\varepsilon_n}u_{\varepsilon_n}) \text{are bdd in } L^2(0,T;H^{-3}(0,1)) \text{ and } L^2(0,T;H^1(0,1)).$$

• Simon '87 ensures that $(h_{\varepsilon_n}u_{\varepsilon_n})$ is compact in $L^2((0,1)\times(0,T))$: $\partial_x u_{\varepsilon_n} \to \partial_x u$ in $L^2((0,1)\times(0,T))$ and $u_{\varepsilon_n} \to u$ in $L^2((0,1)\times(0,T))$.

Convergence to solutions of intermediate-slip equation (

Theorem

For fixed positive Re , σ , and $\{\beta_n\} \to 0$ let $\{(\bar{h}_n, \bar{u}_n)\}$ be a sequence of global weak solutions. Define

$$h_n(x,t) := \bar{h}_n\left(x,\frac{t}{\beta}\right), \ u_n(x,t) := \frac{1}{\beta}\,\bar{u}_n\left(x,\frac{t}{\beta}\right), \ (x,t) \in (0,1) \times (0,\infty).$$

Then $\exists h > 0$ and a subsequence of (h_n, u_n) such that, for any T > 0,

$$\begin{split} h_n \to h & \text{ in } \ L^2(0,T;H^1(0,1)) \cap C([0,1] \times [0,T]), \\ u_n & \rightharpoonup u := h \partial_x (\sigma \partial_{xx} h - \Pi(h)) & \text{ in } \ L^2((0,1) \times (0,T)), \end{split}$$

and h is a unique smooth solution to the intermediate-slip equation.

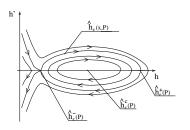
Stationary Solutions (on a way to coarsening)

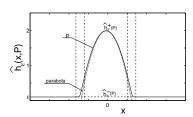
Theorem (Bertozzi et al. '00)

Any lubrication model considered on $\mathbb R$ posses a family of stationary solutions with positive nonconstant height profile $\hat{h}_{\varepsilon}(x,P)$ parameterized by $P \in (0,P_{max}(\varepsilon))$:

$$\partial_{xx}\hat{h}_{\varepsilon}(x, P) = \Pi_{\varepsilon}(\hat{h}_{\varepsilon}(x, P)) - P.$$

For the strong-slip model such stationary solutions have identically zero velocity.



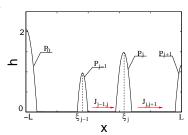


Reduced ODE Models

Weak-slip regime (Glasner and Witelski '03)

$$\begin{array}{rcl} \frac{dP_{j}}{dt} & = & C_{P,j} \cdot (J_{j,\,j+1} - J_{j-1,\,j}), \\ \\ \frac{d\xi_{j}}{dt} & = & C_{\xi,j} \cdot (J_{j,\,j+1} + J_{j-1,\,j}), \\ \\ J_{j,j+1} & = & (P_{j+1} - P_{j})/d_{j} \ \ \text{for} \ \ j = 0, ..., N. \end{array}$$

- P_i , ξ_i -pressure and position of j-th droplet
- ullet $J_{j,\,j+1}$ -flux between j-th and j+1-th droplets
- $d_j = \xi_{j+1} \xi_j$.



Geometric Reduction Approach via Mielke&Zelik '08

No-slip lubrication equation

$$\partial_t h + \mathbb{F}_{\varepsilon}(h) = 0$$
 with $\mathbb{F}_{\varepsilon}(h) := \partial_x \Big(h^3 \partial_x (\partial_{xx} h - \Pi_{\varepsilon}(h)) \Big),$ $\partial_{xxx} h = 0$ and $\partial_x h = 0$ at $x = \pm L$.

ullet Define set of pressures and positions $\mathbb{B}_{arepsilon}\subset\mathbb{R}^{\,2N}$ as

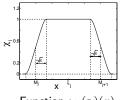
$$\mathbb{B}_{\varepsilon} = \left\{ \mathbf{s} = (P_0, P_1, ..., P_N, \xi_1, \xi_2 ..., \xi_{N-1}) \in \mathbb{R}^{2N} : P_j \in (P_*, P^*); \\ -L < \xi_1 < ... < \xi_{N-1} < L; \xi_i - \xi_{i-1} - 4 d > 2\sqrt{\varepsilon}, i = 1, ..., N \right\},$$

where $\xi_0 := -L, \, \xi_N := L.$

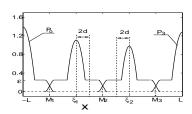
'Approximate Invariant' Manifold I

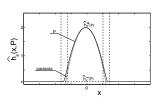
Define a mapping $\mathbf{m}_{\varepsilon}: \mathbb{B}_{\varepsilon} \to L^{\infty}(-L, L)$:

$$\forall \mathbf{s} \in \mathbb{B}_{\varepsilon} \ \mathbf{m}_{\varepsilon}(\mathbf{s})(x) := \sum_{j=0}^{N} \chi_{j}(\mathbf{s})(x) \hat{h}_{\varepsilon}(x - \xi_{j}, P_{j})$$

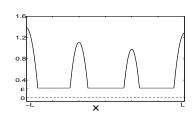


Function $\chi_j(\mathbf{s})(x)$





Steady state $\hat{h}_{\varepsilon}(x, P)$



Their sum $\mathbf{m}_{\varepsilon}(\mathbf{s})(x)$

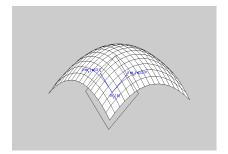
'Approximate Invariant' Manifold II

- Image of \mathbf{m}_{ε} is 2N-dimensional submanifold \mathbb{P}_{ε} in L^{∞}
- Mapping $\mathbf{m}_{\,arepsilon}$ is a diffeomorphism between $\mathbb{B}_{arepsilon}$ and $\mathbb{P}_{arepsilon}$
- Tangent space $\mathbb{T}_{\mathbf{m}}\mathbb{P}_{\varepsilon} = \operatorname{span}\{\phi_0(\mathbf{s}), \phi_1(\mathbf{s}), ..., \phi_{2N-1}(\mathbf{s})\}$, where

$$\begin{array}{lcl} \phi_j(\mathbf{s}) &:= & \displaystyle \frac{\partial \mathbf{m}_{\,\varepsilon}(\mathbf{s}\,)}{\partial P_j} & \text{for} & j=0,...,N; \\ \\ \phi_{N+j}(\mathbf{s}\,) &:= & \displaystyle \frac{\partial \mathbf{m}_{\,\varepsilon}(\mathbf{s}\,)}{\partial \xi_j} & \text{for} & j=1,...,N-1. \end{array}$$

ullet For every $\mathbf{m} \in \mathbb{P}_{arepsilon}$ and sufficiently small arepsilon > 0 one has

$$\left\| \mathbb{F}_{\varepsilon} \left(\mathbf{m} \right) \right\|_{L^{\infty}(-L,L)} \leq \operatorname{const} \varepsilon^{3/2}.$$



Projection on the Manifold

Proposition

For every $\mathbf{s} \in \mathbb{B}_{\varepsilon}$ there exist 'adjoint' functions

$$\bar{\psi}_0(\mathbf{s}), \ \bar{\psi}_1(\mathbf{s}), ..., \bar{\psi}_{2N-1}(\mathbf{s}) \in C^{\infty}(-L, L),$$

such that for all sufficiently small $\varepsilon>0$ and every $j,\ k\in\{0,...2N-1\}$ one has

$$(\bar{\psi}_j(\mathbf{s}), \phi_k(\mathbf{s})) = \delta_{j,k}.$$

For every $\mathbf{m} \in \mathbb{P}_{\varepsilon}$ define a linear operator $P_{\mathbf{m}}$ acting on $v \in L^{\infty}(-L,\,L)$ as

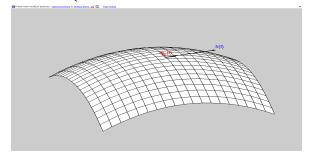
$$P_{\mathbf{m}} v := \sum_{j=0}^{2N-1} (\bar{\psi}_j(\mathbf{s}), \ v) \phi_j(\mathbf{s}).$$

Decomposition Near the Manifold

Theorem

 $\exists \ \, nonlinear \ \, differentiable \ \, function \ \, \pi_{\varepsilon}: \mathcal{O}_{\delta_{\varepsilon}}(\mathbb{P}_{\varepsilon}) \setminus \mathcal{O}_{\delta_{1,\varepsilon}}(\partial\mathbb{P}_{\varepsilon}) \to \mathbb{P}_{\varepsilon} \ \, \text{such that}$ $P_{\mathbf{m}} \, v \equiv 0 \quad \text{for all} \quad h \in \mathcal{O}_{\delta_{\varepsilon}}(\mathbb{P}_{\varepsilon}) \setminus \mathcal{O}_{\delta_{1,\varepsilon}}(\partial\mathbb{P}_{\varepsilon}),$ where we denote $\mathbf{m} := \pi_{\varepsilon}(h)$ and $v := h - \pi_{\varepsilon}(h)$.

 $\begin{array}{l} \bullet \ \ \text{Applying} \ P_{\mathbf{m}(t)} \ \ \text{and} \ I - P_{\mathbf{m}(t)} \ \ \text{to the lubrication equation gives} \\ \partial_t h + \mathbb{F}_\varepsilon \left(h \right) = 0 \ \Longleftrightarrow \ \begin{cases} \ \partial_t v + \mathbb{F}_\varepsilon \,'(\mathbf{m} \, (t)) v(t) = h(\mathbf{m} \, (t), \ v(t), \ \mathbf{m} \, '(t)) \\ \mathbf{m} \, '(t) = f(\mathbf{m} \, , v) \end{array}$



Equation on the Manifold

• Put formally $v(t) \equiv 0$ for t > 0 then

$$\mathbf{m}^{\,\prime}(t) = f(\mathbf{m}^{\,}(t),0) \iff \sum_{i=0}^{i=N} \phi_i(\mathbf{s}^{\,}) \frac{dP_i}{dt} + \sum_{i=N+1}^{i=2N-1} \phi_i(\mathbf{s}^{\,}) \frac{d\xi_i}{dt} = -P_\mathbf{m}^{\,}\mathbb{F}_{\varepsilon}^{\,}(\mathbf{m}^{\,}).$$

ullet Taking the standard scalar product in $L^2(-L,\,L)$ with $ar{\psi}_j({f s}\,)$ gives

$$\frac{dP_{j}}{dt} = C_{P,j} \cdot (J_{j,j+1} - J_{j-1,j}),
\frac{d\xi_{j}}{dt} = -C_{\xi,j} \cdot (J_{j,j+1} + J_{j-1,j}), j = 0, ..., N,$$

where

$$C_{P,j} := -1 / \int_{M_j + \sqrt{\varepsilon}}^{M_{j+1} - \sqrt{\varepsilon}} \frac{\partial \hat{h}_{\varepsilon}(x - \xi_j, P_j)}{\partial P} dx,$$

$$C_{\xi,j} := \frac{\int_{M_j + \sqrt{\varepsilon}}^{M_j + 1 - \sqrt{\varepsilon}} \frac{\hat{h}_{\varepsilon}(x - \xi_j, P_j) - \hat{h}_{\varepsilon}^-(P_j)}{\hat{h}_{\varepsilon}(x - \xi_j, P_j)^3} dx}{2 \int_{M_j + \sqrt{\varepsilon}}^{M_j + 1 - \sqrt{\varepsilon}} \frac{\left(\hat{h}_{\varepsilon}(x - \xi_j, P_j) - \hat{h}_{\varepsilon}^-(P_j)\right)^2}{\hat{h}_{\varepsilon}(x - \xi_j, P_j)^3} dx}.$$

Equation on the Manifold

• Put formally $v(t) \equiv 0$ for t > 0 then

$$\mathbf{m}^{\,\prime}(t) = f(\mathbf{m}^{\,}(t),0) \iff \sum_{i=0}^{i=N} \phi_i(\mathbf{s}^{\,}) \frac{dP_i}{dt} + \sum_{i=N+1}^{i=2N-1} \phi_i(\mathbf{s}^{\,}) \frac{d\xi_i}{dt} = -P_\mathbf{m} \, \mathbb{F}_{\varepsilon}^{\,}\left(\mathbf{m}^{\,}\right).$$

ullet Taking the standard scalar product in $L^2(-L,\,L)$ with $ar{\psi}_j({f s}\,)$ gives

$$\frac{dP_{j}}{dt} = C_{P,j} \cdot (J_{j,j+1} - J_{j-1,j}),
\frac{d\xi_{j}}{dt} = -C_{\xi,j} \cdot (J_{j,j+1} + J_{j-1,j}), j = 0, ..., N,$$

where

$$J_{j-1,j} := J(\mathbf{s})(\theta_j), j = 1,...,N-1,$$

 $J_{-1,0} := -J_{0,1}, J_{N,N+1} := -J_{N-1,N}$

with $heta_j$ being some point in $(M_j - \sqrt{arepsilon},\, M_j + \sqrt{arepsilon})$ and

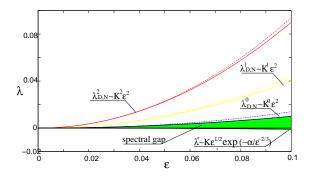
$$J(\mathbf{s}) := (\mathbf{m}_{\varepsilon}(\mathbf{s}))^{3} \partial_{x} \Big(- \Pi_{\varepsilon}(\mathbf{m}_{\varepsilon}(\mathbf{s})) + \partial_{xx} \mathbf{m}_{\varepsilon}(\mathbf{s}) \Big).$$

Spectral Asymptotics

<u>Mielke&Zelik:</u> Show existence of an invariant attracting manifold in $\mathcal{O}_{\delta_{\varepsilon}}(\mathbb{P}_{\varepsilon})$ diffeomorphic to the 'approximate invariant' one \mathbb{P}_{ε}

We show the spectral assumption:

- The spectrum of the linearized evolution equation on a droplet steady state has an exponentially small eigenvalue.
- $\bullet \ \, \text{Between it and the rest of the spectrum there is a gap} \left(0, \left[\frac{\pi}{4(L-A/P)}\varepsilon\right]^2\right) \text{ for all sufficiently small } \varepsilon>0.$



Linear Eigenvalue Problem

- Droplet stationary solution $h_{0,\varepsilon}(x)$
- ullet Hilbert space $W_arepsilon := H^2(-L/arepsilon,\,L/arepsilon)\cap H^1_0(-L/arepsilon,\,L/arepsilon)$
- $\bullet \ \ {\sf Coefficient\ functions} \qquad r_\varepsilon(x) := -\Pi'(h_{0,\varepsilon}(x)), \quad f_\varepsilon(x) := (h_{0,\varepsilon}(x))^{-3}$

Theorem (Laugesen&Pugh '00)

Consider a symmetric eigenvalue problem

$$h \in W_{\varepsilon}, \ \lambda \in \mathbb{R} : \int_{-L/\varepsilon}^{L/\varepsilon} (h''w'' - r_{\varepsilon}h'w' - \lambda f_{\varepsilon}h \, w) \, dx = 0, \ \forall w \in W_{\varepsilon}.$$

For a fixed $\varepsilon>0$ there exist sequences $\{\lambda_{\varepsilon}^*,\,\lambda_{\varepsilon}^0,\,\lambda_{\varepsilon}^1,\ldots\}$, $\{h_{\varepsilon}^*,\,h_{\varepsilon}^0,\,h_{\varepsilon}^1,\ldots\}$:

- (i) for each $j \in \{*, 0, 1, ...\}$ the pair $[h_{\varepsilon}^j, \lambda_{\varepsilon}^j]$ is a solution;
- (ii) $\lambda_{\varepsilon}^* \leq \lambda_{\varepsilon}^0 \leq \lambda_{\varepsilon}^1 \leq \lambda_{\varepsilon}^2 \leq \dots \to \infty;$
- (iii) set $\{h_{\varepsilon}^j\},\ j\in\{*,\ 0,\ 1,\ldots\}$ forms an orthonormal basis in $L^2(-L/\varepsilon,\ L/\varepsilon)$;

Spectral Gap (K., Recke and Wagner '11)

Theorem (algebraic eigenvalues)

For every $j\in\mathbb{N}_0$ there exist positive numbers ε^j,δ^j and functions $\lambda_N^j,\ \lambda_D^j\in C^1((0,\ \varepsilon^j),\mathbb{R}\,)$ such that for all $\varepsilon\in(0,\ \varepsilon^j)$:

- (i) $\lambda_N^j(arepsilon) \in \sigma_arepsilon$ and $\lambda_D^j(arepsilon) \in \sigma_arepsilon$,
- $\left(\text{ii)} \ \left| \lambda_N^j(\varepsilon) \left(\frac{\pi(2j+1)}{2(L-A/P)} \varepsilon \right)^2 \right| = o_1(\varepsilon^2), \quad \left| \lambda_D^j(\varepsilon) \left(\frac{\pi(2j+1)}{2(L-A/P)} \varepsilon \right)^2 \right| = o_2(\varepsilon^2),$
- $\text{(iii)} \ \ \text{If } \lambda \in \sigma_{\varepsilon} \ \ \text{and} \ \left| \lambda \left(\frac{\pi(2j+1)}{2(L-A/P)} \varepsilon \right)^2 \, \right| \leq \delta^j \varepsilon^2 \ \ \text{then} \ \ \lambda = \lambda_N^j(\varepsilon) \ \ \text{or} \ \ \lambda = \lambda_D^j(\varepsilon).$

Theorem (exponentially small eigenvalue)

There exist positive constants c^* , α , ε^* , δ^* and function $\lambda^* \in C^1((0, \varepsilon^*), \mathbb{R})$ such that for all $\varepsilon \in (0, \varepsilon^*)$:

- (i) $\lambda^*(\varepsilon) \in \sigma_{\varepsilon}$
- (ii) $|\lambda^*(\varepsilon)| \le c^* \varepsilon^{1/2} \exp\left(-\frac{\alpha}{\varepsilon^{2/3}}\right)$,
- (iii) If $\lambda \in \sigma_{\varepsilon}$ and $|\lambda| \leq \delta^* \varepsilon^2$ then $\lambda = \lambda^*(\varepsilon)$.

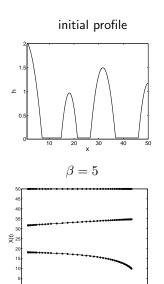
Reduced ODEs for the Strong-slip Model (K. '14)

$$\begin{array}{rcl} \dot{\xi_{j}} & = & C_{\xi_{j}}(J_{j,j+1}+J_{j,j-1}), \\ \\ \dot{P_{j}} & = & C_{P_{j}}(J_{j,j+1}-J_{j,j-1}), \\ \\ J_{j,j+1} & = & \frac{[P_{j+1}-P_{j}]-\nu I(\dot{\xi}_{j+1}+\dot{\xi}_{j})}{d_{j}+2I\nu\beta}, \quad j=0,...,N; \end{array}$$

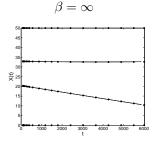
where

$$C_{\xi_j} = \frac{-I\beta}{2A/(P_j\sqrt{\sigma}\beta\nu) + 2I}, \quad C_{P_j} = \varepsilon \frac{4A^3}{3P_j^3}.$$

Numerical comparison





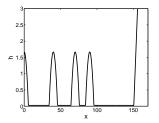


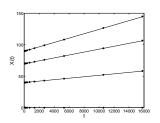
Exactly solvable collision/absorption model I

• Consider leading order migration system for free films ($\beta = \infty$):

$$\begin{split} \dot{X}_0 &= \dot{X}_N = \dot{P}_j = 0 & \text{for } j = 0,...,N; \\ \dot{X}_{j+1} &- 2\dot{X}_j + \dot{X}_{j-1} = \frac{P_{j+1} - P_{j-1}}{\nu I} & \text{for } j = 2,...,N-1; \\ P_N(0) &= \bar{p} \text{ with } 1 \gg p \gg \bar{p} \text{ and } P_j(0) = p & \text{for } j = 0,...,N-1. \end{split}$$

ullet The model reproduces absorption by a huge droplet via subsequent collisions an array of N small droplets.



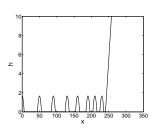


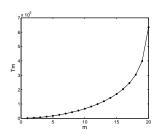
Exactly solvable collision/absorption model II

• The exact solution between subsequent collisions is given by

$$\begin{array}{rcl} d_j(T_c) & = & d_j(0) + \frac{d_n}{N-1}, & j=1,...,N-1 \\ \\ \text{where } T_c & = & \frac{d_NN}{(N-1)B} & \text{with } B = \frac{p-\bar{p}}{\nu I}. \end{array}$$

 <u>Remark:</u> Compare with heuristic breath figure models in physics! (Derrida et. al '91, Bray et. al '94)





Coarsening rates law: continuum case

ullet Denote by n(d) a relative number of droplets with the distances larger or equal d, i.e.

$$n(d) = 1 - \int_0^d f(x) \, dx$$

• Then the exact coarsening rate law is given by:

$$T(d) = \frac{1}{B} \int_0^d n(x) \ln \left[\frac{n(x)}{n(d)} \right] dx.$$

• The discrete coarsening law can be recovered by substitution

$$f(d) = \sum_{m=1}^{k} \frac{i_m}{N} \delta(d - d_m).$$

Examples of coarsening rates

Consider a family of distributions

$$f(x) = \frac{A^{\alpha}}{x^{1+\alpha}} \quad \text{with } A, \, \alpha > 0.$$

• The exact coarsening law for $\alpha = 1$:

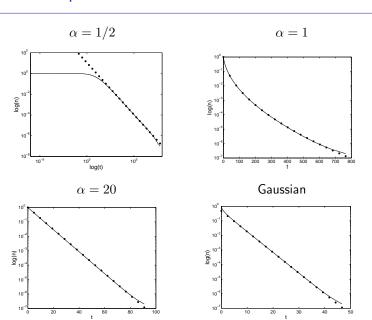
$$n(t) = \exp\left[1 - \sqrt{1 + 2Bt/A}\right]$$

• For $\alpha \neq 1$ the asymptotic coarsening law as $t \to \infty$:

$$n(t) \sim \left\{ \begin{array}{l} \left(\frac{tB(\alpha-1)^2}{\alpha A}\right)^{\frac{\alpha}{\alpha-1}}, & \text{if } \alpha < 1 \\ \\ \exp\left\{-\frac{tB(\alpha-1)}{\alpha A}\right\}, & \text{if } \alpha > 1 \end{array} \right.$$

• Conclusion: For $0 < \alpha < 1$ the coarsening rates are algebraic while they become exponential for $\alpha \in [1, +\infty)$.

Numerical comparison



References

G. Kitavtsev, P. Laurençot and B. Niethammer.

Weak solutions to lubrication equations in the presence of strong slippage.

Methods and Applications of Analysis, 18(2):183-202, 2011.

G. Kitavtsev, L. Recke, and B. Wagner.

Centre manifold reduction approach for the lubrication equation.

G. Kitavtsev, L. Recke, and B. Wagner.

Asymptotics for the spectrum of the linearized thin film equation in a singular limit. SIAM J. Appl. Dyn. Syst., 11(2):1425-1457, 2012.

G. Kitavtsev

Coarsening rates for the dynamics of slipping droplets.

European J. Appl. Math., 25(1):83-115, 2014.

F. Bernis and A. Friedman.

Higher order nonlinear degenerate parabolic equations.

J. Differential Equations, 83:179-206, 1990.

D. Bresch, B. Desjardins, and C.-K. Lin.

On some compressible fluid models: Korteweg, lubrication and shallow water systems. *Comm. Partial Differential Equations*, 28(3-4):1009–1037, 2003.

Thank you for your attention!