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Outline of the talk

@ Thin-film equations: weak- and strong-slip models.

Energy and entropy equalities.

@ Existence of weak solutions and convergence to limiting cases.

@ Coarsening dynamics of drops in thin liquid films.
o Center-manifold and formal matched asymptotics approaches.
@ Reduced ODE models describing coarsening dynamics.

@ Coarsening laws for the exact collision-absorption model.



Physical Model
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Driving physical effects:

@ Surface tension

@ Intermolecular interactions with solid substrate: destabilizing van der
Waals and stabilizing Born repulsion terms
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Dewetting stages

Nanometric viscous polymer fluid on SiO substrate:

Initial Instabilities m@p Quasi-stationary droplets wp

» Coarsening process (collision vs. collapse)

J. Becker et al. '02, P. F. Green et. al. '01




Last stage: Long-time Coarsening Process

min

experiments by Limary et al. '02, numerics in 2D case

Problems to consider here are:

@ Coarsening mechanisms: collapse (similar to Ostwald Ripening in binary
alloys) and collision of droplets (new effect)

@ Coarsening rates and their dependence on physical parameters




Hierarchy of Mathematical Models

Navier-Stokes equations+conservation of mass

\/

Lubrication equations for different slip ranges

\/

‘ Reduced ODE models describing coarsening dynamics of droplets‘

\/

‘An exactly solvable collision/absorption model ‘




Lubrication Models

Weak-slip Strong-slip
he = = (M) [ohas — T(R)], ) Re ((hu)e + (hu®)s) = v(hus)o+
B
8th = — (hu)z

@ Conservation of mass ffL h(z,t) = he = const for all t > 0
@ Different scalings for slip length b pBr < p
@ Mobility term M(h)=h*+bh?
@ Pressure P(h) = —chga + 11 (h)
@ Limiting cases:

o No-slip case b=0, M(h)=h?

o Navier-slip case 8= Br, M(h)=h?

o Suspended free films 8 =00



Summary on the strong slip and free film models

@ Derivation of the model (Miinch et. al '06, Erneux and Davis '93)

@ Weak solutions and their convergence to the classical solutions of
the intermediate-slip equation as 3 — 0. (K., Laurencot and
Niethammer '11)

@ Coarsening dynamics of metastable droplets. Coarsening rates for
the weak-slip regime t~2/5. Migration direction change. Conjecture
of other coarsening slopes due to dominating migration. (K. and
Wagner '10, Otto et. al '06, Glasner et. al '09).



Equations related to the strong-slip model

1-D Korteweg and viscous shallow-water equations on a bounded domain

0y (hu) + 0, (hu ) 0z (v(h)0pu) + chd2h — 9, P(h)
Oth = — 0y (hu) .

@ Solonnikov ‘76 - strong solutions in the case
o =0, v(h) =v = const for d > 1.

@ Mellet and Vasseur '08 and H.-L. Li et al. '08- strong solutions in
the case 0 = 0, v(h) = vh* and P(h) = h".

@ Bresch and Desjardins '04- weak solutions in the case
o >0, u(h) =vh ford > 1.

Difference to the strong-slip model in the singular pressure term and
additional slip term.



Energy and entropy equalities: weak-slip model

@ Energy equality:

where energy

with U(h) := [°TI(7) dr.

@ Entropy equality with entropy G, (h) := 1/h™ (Bernis and Friedman '00):

%/Gn(h) dx = fa/|8mh|2dxf/H’(h)|8zh\2dx.



Energy and entropy equalities: strong-slip model

o Energy equality:

dE /1 ) /1 U2
— =4 vh|Ozu|* dx — — dz,
dt 0 19 o B

where energy
1 2 2
E(h) := / {Re h% +U(h) + g|8x2h} dzx.
0

@ BD-entropy equality with entropy Ga(h) := log(h):

d (‘11 y v |0, h|?
i) [2h(Reu +v0,Ga(h))? ~ £ Ga(h) + Re (a = U(h))]
1,2 1 1
= —Re —dx — 4au/ |02zh|? do — 1// ' (h)|0,h|* da.
o B 0 0



A priori estimates

Proposition

For fixed positive o, Re, 3, T there exists Cy > 1 depending on T, «, v,
Re, o, 8, and ug, hg such that the following terms are bounded by Cy in
respective norms

Vh, 9:Vh, b2, 9,h, VReVhu € L>®(0,T; L*(0,1)),

8, (h=3/2), 8,0h, VhOyu, % e L2((0,1) x (0,T)),

and
Cy' < h(z,t) < Co

for all z € (0,1) and t € (0,T). The constant Cy tends to oo as o — 0.

Sketch of the proof: All estimates follow from the energy equality
except one for . h.



Global weak solutions: weak-slip model

Theorem (Bernis and Friedman '90)

Let TI(h) = 0 and M (h) = h™ with n > 1 then under some regularity
conditions on ho > 0 there exists h > 0 a week solution on (0,1) X [0, c0):

he € L*(0,T; HS(0,1)) for all T > 0 and

/ /h@twdxdt—}—/ hot(., dm-a/ /amha (h)Du1)) da dt

Vi € C§°((0,1) x [0,00)). Forn >4 h is a unique positive smooth solution.

Theorem (Bertozzi et al. '01, Bertozzi and Pugh '98)

Let
1 a

iy
and M (h) = h™ with n > 1 then under some regularity conditions on ho > 0
there exists a unique smooth positive solution h on (0,1) x [0, c0).

TI(h) = a>0



Global weak solutions: strong-slip model

Theorem (K., Laurengot and Niethammer '11)

For any nonegative o, Re, 8 and ho > O there exists a global weak solution
(h, w) having the regularity properties stated in a priori estimates and satisfying

e’} 1 1 [e%s} 1
/ / ho) dxdt + / hot(+,0) dx = —/ / hudz) dzdt,
o Jo 0 o Jo

oo 1 1 oo 1
Re / / hud:¢ dzdt + Re / houoo(+,0) dz + Re / / hu?8,¢ dx dt
o Jo o Jo

0

e’} 1 e’} 1
—V/ / hOru0.¢ dx dt — O’/ / Oz hOzzhep dx dt
o Jo o Jo

oo 1 oo 1 oo 1
—a/ / hamhazd)dxdt—k/ / I (h)Ou p dadt — l/ / ugp dzdt =0
0 0 0 0 B 0 0

for all ¢ € C5°([0, 1] x [0,00)) and ¢ € C§°((0,1) x [0,00)), where

II; (h) := _/hoo T (7) dr.



Global weak solutions: compactness

Sketch of the proof:

@ (dthe,) is bdd in L°°(0,T; H1(0,1))
@ (he,) is bdd in L>=(0,T; H'(0,1)) and L?(0,T; H?(0,1))
e H'(0,1) — C([0,1]) — H~'(0,1) and Simon '87 imply

he, — h in L*(0,T;W"?(0,1)) N C([0,1] x [0,T]),
dihe, = 9h in L=(0,T; H'(0,1)).
@ Hence by uniform low bound
hZ' — k™" in C([0,1] x [0,T7).
@ Next, using momentum equation and a priori estimates
(8¢ (he, ue,)) and (he, ue, )are bdd in L*(0,T; H>(0,1)) and L*(0,T; H'(0,1)).
@ Simon '87 ensures that (he, uc, ) is compact in L((0,1) x (0,T)):

dptie, — dpu in L*((0,1)x (0,T)) and ue, — u in L*((0,1)x(0,T)).



Convergence to solutions of intermediate-slip equation

Theorem

For fixed positive Re, o, and {3,} — 0 let {(h,,,)} be a sequence of
global weak solutions. Define

ho(,8) = B <x %) () = %an <x %) (2,1) € (0,1)x (0, 00).

Then 3h > 0 and a subsequence of (hy,,u,) such that, for any T > 0,

hn — h in L*(0,T; H*(0,1)) n C([0,1] x [0,T)),
Uy — u = hO,y(00,.h —TI(R)) in L*((0,1) x (0,T)),

and h is a unique smooth solution to the intermediate-slip equation.



Stationary Solutions (on a way to coarsening)

Theorem (Bertozzi et al. '00)

Any lubrication model considered on R posses a family of stationary solutions
with positive nonconstant height profile h.(x, P) parameterized by
P € (0, Prnaz(€)):

Opzhe(x, P) = I (h(z, P)) — P.

For the strong-slip model such stationary solutions have identically zero velocity.

N
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Reduced ODE Models

Weak-slip regime (Glasner and Witelski '03)

4P,
- = Ori-Uiivi—Ji-1i),
d .
% Ce,j - (Ji, 5+1 + Ji-1,5),
dt
Jij+1 = (Pjt1— P;)/d; for j=0,..,N.

@ P;, {j—pressure and position of j-th droplet
@ J;, j+1—flux between j-th and j + 1-th droplets

© dj =& — &




Geometric Reduction Approach via Mielke&Zelik '08

@ No-slip lubrication equation

h+F.(h) = 0 with F.(h) ::8z(h3az(8mhfﬂs(h))),
Ozzzh = 0 and 0.h=0 at x==%L.

@ Define set of pressures and positions B. C R2V as
B. = {s = (Po, Pi,..., Px,61,60.,én—1) € RN . P € (P,, PY);

L <E < < Ena <Ly i — iy —Ad > 2/E, i = 1,...,N},

where &y := —L, £En = L.

18



'Approximate Invariant’ Manifold |
Define a mapping m. : B. — L*°(—L, L):

Vs € B. me(s) (@) = 2300 x5 (8) (@)he(z — &, Fy)

a
508 \>-<{“
<

=

of [ HES

: o
W m X

Steady state h.(x, P)

j=0.3 Their sum m.(s)(x)



'Approximate Invariant’ Manifold I

@ Image of m . is 2N-dimensional submanifold P, in L>

@ Mapping m. is a diffeomorphism between B. and P,
@ Tangent space TmP. = span{¢o(s), p1(s), ..., pan—1(s)}, where

_ Om.(s) o _
@i(s) —op, for 7=0,...,N;
ONyi(s) = Om(s) for j=1,...,N —1.

3

@ For every m € P. and sufficiently small € > 0 one has

|

3/2

F. (m)HLm(_L B < conste

S ORI
SN
s
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Projection on the Manifold

Proposition

For every s € B, there exist ‘adjoint’ functions
Yo(s), ¥i(s), ..., han—1(s) € C*(—L, L),
such that for all sufficiently small € > 0 and every j, k € {0,...2N — 1} one has

(©5(s), dr(s)) = 6j k-

For every m € P, define a linear operator Py, acting on v € L>(—L, L) as

2N—-1

Pmvi= Y (;(s), v) ¢;(s).

Jj=0

21



Decomposition Near the Manifold

3 nonlinear differentiable function 7« : Os_(Pc )\ Os, (0P ) — Pe such that

Pmv =0 forall h€Os_ (P:)\ Os, (9P ),

where we denote m := . (h) and v := h — 7. (h).

® Applying Pty and I — Pry(p) to the lubrication equation gives

o +F. ' (m ()v(t) = h(m (8), v(t), m’(¢)
m’(t) = f(m,v)

Och +F. (h) = 0 <:>{

22



Equation on the Manifold

@ Put formally v(¢) =0 for ¢t > 0 then

i=2N—1

dP;

m'() = f(m (0,0) <= > i(s) 5) %

—= = —PnF.(m).

i=N+1

@ Taking the standard scalar product in L?(—L, L) with v;(s) gives

dP;

7; Cpj - (Jj,+1 — Jj-1,5),
.
dt &l (Jj,5+1 + Jj-1,5), 3=0,..., N,

where

i+17VE Db (z — &, Pj)
ij .——1//]\/1 a—Pd.T,

J+1 VE he(z—€5, Py)—h_ (P))
Iz TN

1= Ve (he(e—g;, Pp)—hz (P))° |
sz he(a—t;.P;)® du

Cej =

23



Equation on the Manifold

@ Put formally v(¢) = 0 for ¢ > 0 then

i=2N—1

dél

m'(t) = f(m (1),0 <=>Z¢z

:_Pm £ .
dt Fe (m)
i=N+1

@ Taking the standard scalar product in L?(—L, L) with v;(s) gives

dP;
d—tj = Cp,j ° (Jj,j+1 - Jj—l,j)v
d . o
% = —Cg;- (J5,541 +Jj-1,5), 5=0,..., N,
where
Ji-15 = J()0;), j=1,..,N -1,
J-1,0 = —Jo,1, JN,N+1:=—JIN-1,N

with 6, being some point in (M; — \/e, M; + 1/€) and

J(s) = (mg(s))BBm( CL(m.(s)) —|—8mm5(s)).

23



Spectral Asymptotics

Mielke&Zelik: Show existence of an invariant attracting manifold in Os_(P: )
diffeomorphic to the 'approximate invariant’ one P

We show the spectral assumption:

@ The spectrum of the linearized evolution equation on a droplet steady state has
an exponentially small eigenvalue.

2
@ Between it and the rest of the spectrum there is a gap (0, [me] ) for

all sufficiently small € > 0.

0.08" 7
. ' )\1D‘N K2
0.04- |
)\ )\ZD'N LS ZE ’ e ( }\0 K%?
L P 7
,// --------------------------
0
spectral NKe Pexp—alc?
-0.02 ‘ : | ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1
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Linear Eigenvalue Problem

@ Droplet stationary solution hg ()
@ Hilbert space We := H?*(—L/e, L/e) N H§(—L/e, L/e)
@ Coefficient functions re(x) = —I'(hoc(z)), fe(x):= (hoe(x))™?

Theorem (Laugesen&Pugh '00)

Consider a symmetric eigenvalue problem
L/e

heW, XeR : / (h'w" —reh'w’ — Afhw)de =0, Yw € We.
—L/e

For a fixed € > 0 there exist sequences {\%, A2, AL, ...}, {h%, hQ, hl,..}:
(i) foreachj € {x, 0, 1,...} the pair [hi, ] is a solution;

(i) XX <A SN <A< = oo
(iii) set {hZ}, j € {*, 0, 1,...} forms an orthonormal basis in L?(—L/e, L/¢);

25



Spectral Gap (K., Recke and Wagner '11)

Theorem (algebraic eigenvalues)

For every j € Ny there exist positive numbers g, 87 and functions
Xy, A, € CH((0, €7), R) such that for all £ € (0, 7):

(i) )\g\,(a) € 0. and )\%(8) € o,

(ii) ‘Ag'v(e)— (%5)2 ‘ = 01(e2), )Ajb(s)— (%5)2 ] = 02(?),

. 2 . . .
(iii) IfX € oo and ],\ - (%a) ) < 8962 then A = M (e) or A = M, (e).

Theorem (exponentially small eigenvalue)

There exist positive constants c*, a, €*,6* and function \* € C((0, *), R) such
that for all € € (0, €*):

(i) A\*(e) € o«
- * * o
(i) X&) <e el/2 €xp (_52?)'

(ii) I\ € oc and |\| < §%2 then A = \* ().

26



Reduced ODEs for the Strong-slip Model (K. '14)

& = Ce(Jjje+Jj5-1),
P = Cp(Jjj41— Jjj-1),

[Pi1— Pl —vI(§+E&)

Jig+1 =  j=0,.,N;
P41 d; +2Iv8 g
where / 43
— 4
Ce b Cp

T 2A(Ppapy) + 21 T T T3P

27



Numerical comparison

initial profile
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Exactly solvable collision/absorption model |

o Consider leading order migration system for free films (8 = co):

Xo=Xy=P; =0 for j=0,...,N;
Piy1—Pia

Xj1 = 2X;+ Xj1 = i

for j=2,...., N —1;
Pn(0) =pwithl>p>pand Pj(0)=p forj=0,..,N—1.

@ The model reproduces absorption by a huge droplet via subsequent
collisions an array of NV small droplets.

2.5]
2 Jnu/

1 So/

0 50 100 150 2000 4000 6000 8000 10000 12000 14000 16000 29
t



Exactly solvable collision/absorption model Il

@ The exact solution between subsequent collisions is given by

dn
(T = d; i1, N-1
JT) = G0+
dx N . p—p
here T, = —N& th B = .
where (N_1)B W i

@ Remark: Compare with heuristic breath figure models in physics!
(Derrida et. al '91, Bray et. al '94)

0 50 100 150 200 250 300 350 0 5 10 15 20
X
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Coarsening rates law: continuum case

@ Denote by n(d) a relative number of droplets with the distances

larger or equal d, i.e.
d
d) = 1—/ (@) da
0

@ Then the exact coarsening rate law is given by:

1 [ n(zx)
Td) == In |—=| da.
0= | a5 a
@ The discrete coarsening law can be recovered by substitution
ko
_y img
N
m=1

31



Examples of coarsening rates

@ Consider a family of distributions
Aa
flz) = i with A, a > 0.
@ The exact coarsening law for ao = 1:

n(t) = exp [1 — \/m]

@ For ae # 1 the asymptotic coarsening law as ¢t — oo:

tB(a — 1)? a1 .
(T) , if a<l1
n(t) ~ .
exp{ftB(ziA_l)}, if a>1

@ Conclusion: For 0 < a < 1 the coarsening rates are algebraic while they
become exponential for « € [1, +00).
32



Numerical comparison
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Thank you for your attention!
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