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Statement of the problem

We consider the so called hyperbolic Cahn-Hilliard-Oono equation

£0?u + Oiu + au+ Ay (Ayu—f(u)+g) =0, xeQ, (1)
(u, 0ru)|t=0 = (o, u6) €€ = (Hl N /_'/*1> « 41 (2)
where Q = R3 and
e=1and a>0;

B g =g(x) € HY,
f € C%(R) such that

u)u 0, )
F(u) < Lf(u)u+ K]u]2, F(u) = /“ f(v)dv, L, K> 0, (4)
0

(W) < C(L+1ul), q€]0,3). (5)



Overview: parabolic case

a =0, J. Cahn, J. Hilliard 1958:
Oru+au+ Ay (Agu—f(u)+g) =0, x € Q.

Q - bdd: well understood, see e. g.
A. Novick-Cohen 1998;
R. Temam 1988;
L. Cherfils, A. Miranville, S. Zelik 2011;
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Overview: parabolic case

a =0, J. Cahn, J. Hilliard 1958:
Oru+au+ Ay (Agu—f(u)+g) =0, x € Q.

Q - bdd: well understood, see e. g.
A. Novick-Cohen 1998;:
R. Temam 1988;
L. Cherfils, A. Miranville, S. Zelik 2011;
Q =R": less understood,
L. Caffarelli, N. Muler 1995;
Restoring dissipation: Y. Oono, S. Puri 1987 - o > 0
J. Pennant, S. Zelik 2013;



Overview: hyperbolic case, ¢ > 0

P. Galenko 2001, 2005, 2008: hyperbolic CHO equation with
a=0.

£02u+ Oru+ au+ Ay (Axu — f(u) +g) =0, x € R3,

Q=10,/], g = 0, various BC:
A. Debussche 1991;
S. Zheng, A. Milani 2005;
S. Gatti, M. Grasselli, A. Miranville, V. Pata 2005, 2006;
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Overview: hyperbolic case, ¢ > 0

P. Galenko 2001, 2005, 2008: hyperbolic CHO equation with
a=0.

£02u+ Oru+ au+ Ay (Axu — f(u) +g) =0, x € R3,

Q=10,/], g = 0, various BC:
A. Debussche 1991;
S. Zheng, A. Milani 2005;
S. Gatti, M. Grasselli, A. Miranville, V. Pata 2005, 2006;
A Q C R? and bdd, g € [0, 1], Dirichlet BC:
M. Grasselli, G. Schimperna, S. Zelik 2009;
Q c R3 and bdd, Dirichlet BC:
M. Grasselli, G. Schimperna, S. Zelik 2010.
No uniqueness is known in L>([0, T]; H(Q) x H71(f)) even
for bdd f.



Overview: hyperbolic case, € > 0

(-,) - scalar product in L2, || - ||-norm in L?;
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&u()12 = u(DI2, + allu(®)?, + 193,



Overview: hyperbolic case, ¢ > 0

(-,-) - scalar product in L2, || - ||-norm in L?;

& = (u,00), €82 = Nu(OIIZ, + allu(®)IZ,_, + 9:u(e)], -

d (1
2 (Gl + (F. 1) = (6.0) ) + ey, =0,



Overview: hyperbolic case, € > 0

Notations
(-,-) - scalar product in L2, || - ||-norm in L?;
§u = (u,0e0), €u(&)2 = U, + allu(®)I,, + 10eu(®), -

Energy identity

d

1
2 (Gl + (F. 1) = (6.0) ) + ey, =0,

Definition 1

Function u such that §,(t) € L>([0, T]; £) to be called energy
solution of (1)-(2) on [0, T] if it solves the problem in the sense
of distributions and ,(0) = (uo, ug).



Overview: hyperbolic case, € > 0

Theorem 1 (Existence of Energy Solutions and Dissipative
Estimate)

Let f satisfies dissipative and growth assumptions, then problem
(1)-(2) possesses global energy solution u such that
£u(t) € L®°(RT; &) and for all t >0

t+1
(D2 + / 10eu(s)1, 1 ds < QIEO)|e)e ™ + Qe )-

where 5 > 0 and @ is a monotone increasing function which is
independent of t and u.



Overview: hyperbolic case, € > 0

Theorem 1 (Existence of Energy Solutions and Dissipative
Estimate)

Let f satisfies dissipative and growth assumptions, then problem
(1)-(2) possesses global energy solution u such that
£u(t) € L®°(RT; &) and for all t >0

t+1
[AGIF +/t 10eu(s)IIZ, - ds < QIE(0)lle)e ™" + QUllgl u)-

where 5 > 0 and @ is a monotone increasing function which is
independent of t and u.

3D: no uniqueness is known even for bdd f.



Plate Equation and Variation of Constants Formula

{a§v+A§vaxH(t), H(t) € LL_(R; HY),

loc

V|t:0 =VWe Hl, 8tV|t:0 =V e H_l.

V(t) = sin(AXt)(AX)_1 Vi+cos(Axt) Vo—i—/otsin(AX(t—s))H(s)ds.



Plate Equation and Variation of Constants Formula

loc

D2V + A2V = AH(t), H(t) e LL _(R; HY),
V|t:0 =VWe Hl, 8tV|t:0 =V e Hfl.

V(t) = sin(Axt)(Ay) "t Vi+cos(Axt) Vo—i-/tsin(AX(t—s))H(s)ds.
0

Theorem 2 (J. Ginibre, G. Velo 1985; T. Cazenave 2003)

9:U — iU = H(t), H(t) € LL _(R; HY),
U’tzo = U € Hl.

Then U € C(R; HY)N L4 (R; L*°) and

loc

Il =7, 73:6m) + Ul L=, 75000) <
Cr (IWollin + WMl s 7,7y ) -



Definition 2 (S-solution)

Energy solution u(t) of problem (1)-(2) is called S — solution iff it
possesses the extra regularity £, € C([0, T]; E) and
u € L*[0, T]; Gp).



Definition 2 (S-solution)

Energy solution u(t) of problem (1)-(2) is called S — solution iff it
possesses the extra regularity £, € C([0, T]; E) and
u € L*[0, T]; Gp).

Theorem 3 (Existence of S-solutions and dissipative estimate)

Let f be of subquintic growth and satisfies dissipative assumption.
Then problem (1)-(2) possesses global S-solution u such that
£u(t) € Co(Ry;E) and u € L}, (Ry; Cp) and dissipative estimate
holds

t+1
[FGIF +/t 10eu(s)IIZ, s ds + [[ullFee rragic,) <
QUI€u(0)]le)e Pt + Q(llg]l ), t = 0.

where 5 > 0 and @ is a monotone increasing function which is
independent of t and u.



Uniqueness and continuous dependence S-solutions

Corollary

S-solutions obey energy identity, indeed f(u) € L} (R, ; HY);

loc
S-solutions are unique. Moreover,

(1€ (£) = Eun(D)lle + [lun — wall pa (e e415;6,) S
Ce"*)1£,(0) — £, (0) e,

where C and K depend on ||£u1(0)||5a ||£u2(0)||5 only.



Basic definitions

Let £ be a complete metric space and S; : £ — £ be a semigroup
on €.

Definition 3
A subset A C £ is called a global attractor for the dynamical
system (€, S), if

A is compact in E;

A A is invariant, i.e. S;A= AVt > 0;

for any bounded set B C £
tim sup{dist(Sty,A): y € B} =0.



Main result

Theorem 4 (A. S., S. Zelik)

Let f be of subquintic growth and satisfies dissipative assumptions.
Then the S-solution semigroup S(t) associated with problem

(1)-(2):
S5t: & =€, Stfo = gu(t)a gu(o) = o,

possesses a global attractor A in £. Furthermore,
||A||52 < Cy,

where & = H3NH 1 x HnHL,



Basic definitions

Let £ be a complete metric space and S; : £ — £ be a semigroup
on £.

Definition 4 (Absorbing set)

A set D to be called absorbing for the dynamical system (€, S;) iff:
Vbdd BCEIT=T(B): YVt>T 5B CD.



Basic definitions

Let £ be a complete metric space and S; : £ — £ be a semigroup
on £.

Definition 4 (Absorbing set)

A set D to be called absorbing for the dynamical system (£, S) iff:
Vbdd BCEIT=T(B): Vt>T 5B CD.

Definition 5 (Asymptotic compactness)

The (€, S:) is asymptotically compact iff for any bdd set B C &,
any sequence of the initial data £, € B and any sequence of times
t, > 0 such that t, — +00 as n — oo, the sequence

{St,&n}req is precompact in E.



Classic result

R. Temam 1988; A. Babin, M. Vishik 1990.

Theorem 5 (Existence of the attractor)

Let the semi-group S; : £ — £ possess the following properties:
The operators S; : £ — £ are continuous in & for every fixed t;
A (£,S:) possesses a bounded absorbing set

(= is dissipative);
(&, S¢) is asymptotically compact.

Then dynamical system (€, S;) possesses a global attractor A C &,

which is generated by all complete trajectories of the semi-group

St N

Ale't:O’

where IC C L*>°(R, £) consists of all bounded functions u: R — £
such that Spu(t) = u(t + h) for all t € R and h > 0.



Scheme of the proof: asymptotic compactness

1. Fixbdd B C &, {&}02 C B, {ta}i2q: tn — +00.
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2. Consider the problem
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Scheme of the proof: asymptotic compactness

1. Fixbdd B C &, {&n}pe C B, {th}02 1 th = F00.
2. Consider the problem

8?u,,+8tu,,—|—ozun—|—AX (Axup — f(up) +g) =0, (6)
(Unaatun)’t:—tn =&
St,én = £u,(0) — bdd by dissipativity . (7)

€u,(0) — £,(0) a. e. wrt x, weakly in £, where (8)

u(t) € Co(R,E) N LY (R, Cp) is a complete S-solution.
4. To prove
§un(0) = £u(0) strongly in & (9)

It is enough
1€u, (0)lle = [1€u(0)[[&, n — oc. (10)



5. Energy method (R. Rosa et al. 1998, J. Ball 2004)

E.(t) :=
e O-+@eu(e). (-8 u(e))+ O+ (F(u(0). D).

0 > 0 - small enough.



5. Energy method (R. Rosa et al. 1998, J. Ball 2004)
Eu(t) =
SIE)B+0(Deu(), (~ ) ()2 (1) 31 +(F(u(), 1),

0 > 0 - small enough.

o (Gt + Eu ()5 (G0l + Eu () =~ (0

£ > 0 - small enough.
1 5 =
S, O] + E,,(0) =
st (1 2 | F ° e
Z|’€Un(_tn)”5+EUn(_tn) - e” My, (t)dt.

—tn



By weak convergence and Fatou lemma

0 0
E.(0) < lim E,(0), / e"*H,(s)ds < lim / e"H,, (s)ds.

n—o00 —00 n—oo J —t,

0
Lm0 + En(0)< — / e H,(s)ds. (1)

4 n—oo oo



By weak convergence and Fatou lemma

0 0
E.(0) < lim E,(0), / e"*H,(s)ds < lim / e"H,, (s)ds.

n—o00 —00 n—oo J —t,

0
L lim 16 012 + Eu(0)< / 5 (s)ds. (1)

4 n—oo oo
However, since u obeys energy identity,

1 2 C _ 0 Bs
OB+ EO-- [ s
Thus e
Tim [, (0)] < Eu(0)] < lim (&, (0)]3

n—oo

6. Smoothness of the attractor follows from its compactness.



Finite fractal dimension of the attractor

Fractal dimension d/me of a compact set M C £ in a metric
space & is defined by

logn(M,e) where n(M,¢€) is the minimal number
d/m M = lim ——
e>0  log (1) of closed e-balls that cover M.

Theorem 6 (A. S., S. Zelik)

Let f be of subquintic growth and satisfies dissipative assumptions.
And let A be the global attractor of the dynamical system
associated with S-solutions of the hyperbolic CHO equation. Then

dim§ A < oo.



Basics of multilinear algebra

Let £ be a separable Hilbert space.

Definition 7 (Wedge-product)

Let ¢1,...,0q € E, then ¢1 A ... N\ @q is a d-linear antisymmetric
form on &£ defined by:

DA Abg(Wn,- . ba) = det (B i)fjms), Y1oe-o g €€,

A9E - space of all finite d-linear antisymmetric functionals that can
be represented as finite linear combination of terms ¢1 A ... A ¢gq.

Definition 8 (Scalar product)
(B1 A A@dyh1 A ... Atpg)pag = det <(¢i,¢j)§{j=1>

Definition 9
NIE- completion of NYE with respect to || - || pag-



Volume contraction factor

Definition 10 (A9L)

Let L € L(E,E). Then the linear operator N9L acts on N9E by:

(AdL)g(ll/}l? tt ’wd) — é_(L*/lpl? MR L*¢d)7
where L* € L(E,E) is the adjoint to L.

In particular, if £ = ¢1 A... A ¢y, then
(AdL)(¢1 Ao ANdg) =Ly A ... A Loy,

Proposition 1

Let L € L(E,E), then NL € L(NE,NYE) and

wy(L) = ||/\dL||/\dg _ sup ILpan..ALpgllpae b voly (L)

L. Apg#0 lo1A...Addllpae Ee voly (1)




The Liouville formula

o0 =LA, dlo=do, 20, (13)
for some L(t) € L>=([0, T]; L(£)).

Proposition 2 (Liouville formula)

Let ¢1(t), ..., d4(t) be solutions of problem (13), then
1lpu(t) A A Ga(B)]20g =
TH(QLEQI61(8) A ... A bu()]2ee:
where Q(t) is the orthoprojector on the d-dimensional space
spanned by ¢1(t),...,pq4(t) and Tr(-) is a trace of the
corresponding mattrix.



The Liouville formula

o0 =LA, dlo=do, 20, (13)
for some L(t) € L>=([0, T]; L(£)).

Proposition 2 (Liouville formula)

Let ¢1(t), ..., d4(t) be solutions of problem (13), then
1lpu(t) A A Ga(B)]20g =
THQUOLOQE61(8) A ... A bu(®)]2ee,
where Q(t) is the orthoprojector on the d-dimensional space
spanned by ¢1(t),...,pq4(t) and Tr(-) is a trace of the
corresponding mattrix.

Definition 11 (d-trace Try(L))
Let L € L(E), then its d-trace Trgq(L) is defined by

d
Tra(L) = sup{z(w;,w;) DY €8, (¥iy) = 5//}

i=1




Corollary

Let U(t) : £ — & be the solution operator of problem (13), that is
¢(t) = U(t)o. Then wy(U(t)) < exp{ [y Tra(L(s))ds}.




Corollary

Let U(t) : £ — & be the solution operator of problem (13), that is
o(t) = U(t)po. Then wy(U(t)) < exp{fot Trg(L(s))ds}.

Proposition 3 ( Try(L) representation)

Let L € L(E) be positive self-adjoint operator and let

(Lo, 9)

,U/k L = |_n *
(L) FCE, dim F=k—1 4cpL 440 o[>

Then ;
Tra(L) = 3 pi(L). (14)
k=1



The Liouville formula with time dependent metric

J. - M. Ghidaglia, 1988: Cubic Schrodinger equation on [0, L]. £(t) -
Hilbert space & with family of scalar products (-, -)g(s):
912 < 1613 < cllgl2, t e R

Proposition 4 (Liouville formula)

Let equation (13) be well-posed and its solutions satisfy energy-identity
of the form

2 5ll8lE ey = (M(£)d(t), ¢(t))e = (Mg (£)d(t), &(t))eqry (*)
for some operators M(t) and Mgy (t) defined from Riesz Theorem.
Then

3allor(®) A A ba(B) gy =

Tf(Q(t)Ms(r)(f)Q(f))H¢>1(f) A Ga(t) IR o)
where Q(t) is orthoprojector on ¢1(t), ..., (bd( ) in E(t).



The Liouville formula with time dependent metric

J. - M. Ghidaglia, 1988: Cubic Schrodinger equation on [0, L]. £(t) -
Hilbert space & with family of scalar products (-, -)g(s):
912 < 1613 < cllgl2, t e R

Proposition 4 (Liouville formula)

Let equation (13) be well-posed and its solutions satisfy energy-identity
of the form

3 alollz ) = (M(£)d(t), 8(t))e = (Me(o (1) (1), $(t))eqe) (*)

for some operators M(t) and Mgy (t) defined from Riesz Theorem.
Then

3allor(®) A A ba(B) gy =
Tr(Q(t) Mgy (1) Q) f1(t) A - .. A Ga(t)|Rag ey
where Q(t) is orthoprojector on ¢1(t), ..., dq(t) in E(t).

Lemma 1

1. L€ L(E), then c=9wy(L,E) < wa(L,E(t)) < cwa(L,E);
2. M(t) >0, then ¢~ Trg(M(t),€) < Trg(Me(r), £(t)) < cTrg(M(t), ).



Theorem 7 (Main abstract result, A. S., S. Zelik)

Let linear problem (13) be well-posed in € and its solutions
o(t) = U(t)po possess the energy identity (*). Assume
(M(t), 9)e < (C(1),D)e + (K(1)6, O)e, 6 €
where
1(C(t)p,9)e < —BllolIz, ¢ €€, S > 0 — independent of t;
2.K(t) — positive, (K(t)p, o) < (Ko, 9), K € L(E) — compact.
Then
1. we(U(t), ) < edMmetle Ck=58)t, where Ck depends only on K;
2. If d is such that Cx — Bd/2 < 0, then

wa(U(t),E) < 1/2, as long as t > ty.

Proof.

wa(U(t),E) < cYwq(U(t), E(t)) <

cdexp{fot Tra(Ce(s)(5), £(5)) + Tra(Ke(s)(s), £(s))ds} <

clexp {fot c 1Try(C(s),€) + cTrd(K(s),E)ds} <

clexp {t (—c'Bd+ cTry(K,E))} <

clexp {t (—c'Bd + c(Cx + Bd c2/2))}. O



Volume contraction theorem

Definition 12 (Quasidifferential)

AmapS: A— A, where A is a compact subset of a Banach
space & is called uniform quasidifferentiable on A if for any £ € A
there exists S'(€) € L(E):

1 1S(&2) — S(&1) — S'(&1)(&2 — &)lle = o(llé1 — &2lle), holds
uniformly for all &1, & € A;

2. 5'(&) € C(A, L(E)).

Theorem 8 (Main abstract result)

Let A be a compact set of a Hilbert space £:

1. SA = A; 2. S is quasidifferentiable on A;

3. §'(€) contacts all d-volumes uniformly w. r. t. £ € A, i. e.
wy(A,S) = sup wq(S'(£),€) < 1.

Then dimé A < d.

V. Chepyzhov, A. llyin 2004; R. Temam 1988.



Quasidifferentiability

Theorem 9

Let f be of subquintic growth and satisfies dissipative assumptions.
Then solution operator S(t) of the hyperbolic CHO equation is
uniformly quasidifferentiablf on the attractor A:

Véo € A Sl(t7§0)§ = {W(t), €,

where w solves the equation of variations

?w + 0w + aw + A (Axw — f'(u)w) =0, x € R3,
{t : ( (s)w) QD)

Ewle—o = (wo, w§) = &,

where ,(t) = S(t)&o is S-solution hyperbolic CHO equation with
initial data & € A.



Obviously, we can rewrite (QD) as &¢,,(t) = L(t,&)éw(t), with

L(t, &) == (_Oa _11> + (_OAX 8) (AX - ’g(“(t)) 8> (QD")

Standard argument fails:
38 (116w 2 +20(dew, w) s +0llwl,, ) =
(= 00wy, + dlw(t)]2, + odw(B)]?,)

—(F(u)w, Ow) — 3(F (w)w, w),

where § > 0 is small enough.

Indeed, assume, for simplicity, that

1.Q - smooth and bdd; 2. £ = H}(Q) x H71(Q);

3. f'(u) = C then

(antW) = (K£W7§W)€7 with K = <

not compact!

0 O .
A, 0>, and K € L(E) is



Finite fractal dimension of the attractor: proof

IDEA: kill the (f'(u)w, Orw).
Let us introduce the family of equivalent norms on 5
1€w ()13 (e 60y = I1€wlIE +20(Dew, w) s + Ol w3,

(F()w, w) + L[[(=Dx + 1)~ 1/2(wa)\|%2,
where
0<¢r(x) <1, Yr(x)=1if |x| <R =1, Yr(x) =0if x| =2 R
and L, R are large enough parameters to be fixed below.



Finite fractal dimension of the attractor: proof

IDEA: kill the (f'(u)w, Orw).
Let us introduce the family of equivalent norms on 5
I€w(t )Hg (t,€) H£WH€ + 20(0rw, W)H 1+ 5HW||
(F()w, w) + L[[(=Dx + 1)~ 1/2(wa)\|%2,
where
0<¢r(x) <1, ¢r(x) =1if x| SR =1, Yr(x) =0if |x[ = R
and L, R are large enough parameters to be fixed below.
We have

2 dt”gw( Wecee) = = (1= )|OewllF, . + Sllw(e) [} + adllw(t)lIF) —
S (). w) + 5 (7 ()0 w?) + L=+ 1) (), Vi) =
(M(t’ §0)§W7£W)g~ (15)



Theorem 10 (Equivalence of the norms)

There exist constants L, R, § > 0 such that

w2 < ewlZ e, < clléwl?,

where constant ¢ does not depend on t and & € A.

Proof

Upper bound: trivial;
Lower bound:
(F'(u)w, w) =
(Vrf'(u)w, w) + (1 = 9r)[f'(u) — F'(0)]w, w) + F'(0)((1 — ¥r)w, w) >
—C(vrw,w) — C[|(1 = Pr)ull= [wl[7. >
—Cll(—2x + 1) 72 (W)l 2 ((—2x + 1w, w)'/2—
ClI(L = r)ulle= Wi >

—Cl(=Ax + 1) 72 (grw) 172 — elléwllz — ClI(L — ¥r)ulle= W%,
where € > 0 is arbitrary. :

11 = ¥r)ull~ < ||“||1_2 (|x|>R-1) ullfe < e,
as long as R > R(e1) - large enough.
(f'(u)w, w) > = Cl(=Ax + 1) 72 (Yrw)|7 — elléwllz, R > R(e). O




Completion of the proof

(M(t,80)6w Ew)e < —TNIEwllE + Cllvrw|? = —ylI€wllE + (K&w, Ew)e.
for some v, C > 0 that do not depend on & and t.

Indeed,

|(F"()deu, w?)| < C(|0cul, prw?) + C((1 — ¥R)|Brul, w?) <
< ClOeullsllPrwll 2 wlles + ClI(L = Pr)Deullsllw s wll 2 <
< Clvrwllizlléwlle + ClI(L = ¢r)Dulll|€nllz.  (16)

(1 = ¥Rr)Orull 1z < Cl|Ocul|13(1x>rR-1) <
10cul|f2(y> m-pylOeull s < e, (17)

as long as R = R(e) - large enough. Thus
|(F"(u)Beu, w?)| < Celléwlz + CollrwliZ:, (18)

where € > 0 is arbitrary small.



Final Remark

Remark: Strichartz estimates can be effectively used in dissipative case.
One more example: wave damped equation.

O2u + yoru — Ayu + ulul? = g(x), x €Q (19)
Eule=o = (uo, 1) € € := Hy(Q) x L*(Q), ulaq = 0. (20)

g =2 : A. Babin, M. Vishik, 1989; J. Arrieta, A. Carvalho, J. Hale, 1992;
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Strichartz estimates for wave equation:
1990-1994: M. Grillakis; L. Kapitanski; J. Shatah, M. Struwe.

Theorem 11

Let Q=R3 0< g<4, v > 0, then wave equation possesses a unique
energy solution such that u € L3([0, T]; L°(Q2))-norm is finite for all
T>0.

2 < g < 4:E. Feireisl 1995, Q = R3; L. Kapitanski, 1995, Q-compact
manifold without boundary;
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Theorem 11
Let Q=R3 0< g<4, v > 0, then wave equation possesses a unique

energy solution such that u € L3([0, T]; L°(Q2))-norm is finite for all
T > 0.

2 < g < 4:E. Feireisl 1995, Q = R3; L. Kapitanski, 1995, Q-compact
manifold without boundary;

N. Burq, G. Lebau, F. Planchon, 2008: Q C R3 - smooth bdd with
boundary;

g =4 : A. Savostianov, V. Kalantarov, S. Zelik, submitted.



Thank You!
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